Controls on fallen leaf chemistry and forest floor element masses in native and novel forests across a tropical island
نویسندگان
چکیده
Litter chemistry varies across landscapes according to factors rarely examined simultaneously. We analyzed 11 elements in forest floor (fallen) leaves and additional litter components from 143 forest inventory plots systematically located across Puerto Rico, a tropical island recovering from large-scale forest clearing. We assessed whether three existing, independently-derived, landscape classifications (Holdridge life zone, remotely sensed forest type (leaf longevity combined with geology generalized to karst vs. non-karst), and plot-based measures of forest assemblage) would separate observed gradients. With principal component and regression analyses, we also tested whether climate-, landscape(geology, elevation, aspect, percent slope, slope position, distance from coast), and stand-scale (tree species composition, basal area, density, stand age) variables explained variation in fallen leaf chemistry and stoichiometry. For fallen leaves, C, Ca, Mg, Na, and Mn concentrations differed by Holdridge life zone and C, P, Ca, Mn, Al, and Fe concentrations differed by forest type, where leaf longevity distinguished C and Ca concentrations and geology distinguished C, P, Ca, Mn, Al, and Fe concentrations. Fallen leaf C, P, Ca, and Mn concentrations also differed, and N concentrations only differed, by forest assemblage. Across several scales, fallen leaf N concentration was positively related to the basal area of putatively N2-fixing tree legumes, which were concentrated in lower topographic positions, providing for the first time a biological explanation for the high N concentrations of fallen leaves in these locations. Phosphorus concentrations in fallen leaves by forest assemblages also correlated with the basal area of N2-fixing legumes, and P and N concentrations decreased with mean age of assemblage. Fallen leaves from younger (,50 yr, 86% of the plots) and often novel forests had higher P, Fe, and Al and lower C concentrations and lower C/P and N/P ratios than fallen leaves from older forests, the latter due to a decrease in P rather than changes in N. These findings suggest that both N and P availability may currently be greater on the island than pre-deforestation, and substantiate the unique roles that state factors play in contributing to the spatial heterogeneity of fallen leaf chemistry.
منابع مشابه
Novelty and Its Ecological Implications to Dry Forest Functioning and Conservation
Tropical and subtropical dry forest life zones support forests with lower stature and species richness than do tropical and subtropical life zones with greater water availability. The number of naturalized species that can thrive and mix with native species to form novel forests in dry forest conditions in Puerto Rico and the US Virgin Islands is lower than in other insular life zones. These no...
متن کاملSoil Biology Research across Latitude, Elevation and Disturbance Gradients: A Review of Forest Studies from Puerto Rico during the Past 25 Years
Progress in understanding changes in soil biology in response to latitude, elevation and disturbance gradients has generally lagged behind studies of above-ground plants and animals owing to methodological constraints and high diversity and complexity of interactions in below-ground food webs. New methods have opened research opportunities in below-ground systems, leading to a rapid increase in...
متن کاملNative and alien plant species inventory and diversity in disturbed forests and its economic value
The study was conducted to assess the native and alien plant species in one of the highly disturbed forest (S1) and less disturbed forest (S2) in Mt. Manunggal, Cebu Island, Philippines. Twenty-four quadrats with a size of 20mx20 m were established using a quadrat sampling technique to identify and record all plant species. Diversity indices were utilized to determine species abundance, richnes...
متن کاملControls on long-term root and leaf litter decomposition in neotropical forests
Litter decomposition represents one of the largest annual fluxes of carbon (C) from terrestrial ecosystems, particularly for tropical forests, which are generally characterized by high net primary productivity and litter turnover. We used data from the Long-Term Intersite Decomposition Experiment (LIDET) to (1) determine the relative importance of climate and litter quality as predictors of dec...
متن کاملLeaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests
Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may b...
متن کامل